Home
Class 12
MATHS
If (sinx)^y=(cosy)^x , prove that (dy)/(...

If `(sinx)^y=(cosy)^x` , prove that `(dy)/(dx)=(logcosy-ycotx)/(logsinx+xtany)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin"x")^y=(cos"y")^x , prove that (dy)/(dx)=(logcosy-ycotx)/(logsinx+xtany)

If (sinx)^y=(cosy)^x ,p rov et h a t(dy)/(dx)=(logcosy-ycotx)/(logsinx+xtany)

If (sinx)^y=x+y , prove that (dy)/(dx)=(1-(x+y)ycotx)/((x+y)logsinx-1)

If (sin"x")^y=x+y ,p rov et h a t(dy)/(dx)=(1-(x+y)ycotx)/((x+y)logsinx-1)

If (cosx)^(y)=(cosy)^(x) , then find (dy)/(dx) .

If y=(sinx)^((sinx)^((sinx)^(...^infty))) , prove that (dy)/(dx)=(y^2cosx)/((1-ylogsinx)

If y=sinx^(sinx^(sinx^dotoo)) , prove that (dy)/(dx)=(y^2cotx)/((1-ylogsinx))

If (cosx)^y=(cosy)^x , find (dy)/(dx)

If y=(sinx)^((sinx)^((sinx)...oo))," prove that "(dy)/(dx)=(y^(2)cotx)/((1-ylog sinx)).

If y=sinx.cos(2x) then prove that (dy)/(dx)=y[cotx-2tan2x]