Home
Class 6
MATHS
Simplify : 1'2/(15) + 2'2/(15) + 3'2/(15...

Simplify : `1'2/(15) + 2'2/(15) + 3'2/(15) + "……" + 100'2/(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(1\frac{2}{15} + 2\frac{2}{15} + 3\frac{2}{15} + \ldots + 100\frac{2}{15}\), we can follow these steps: ### Step 1: Rewrite the Mixed Numbers First, we rewrite each mixed number as an improper fraction. \[ 1\frac{2}{15} = \frac{15 \times 1 + 2}{15} = \frac{17}{15} \] \[ 2\frac{2}{15} = \frac{15 \times 2 + 2}{15} = \frac{32}{15} \] \[ 3\frac{2}{15} = \frac{15 \times 3 + 2}{15} = \frac{47}{15} \] \[ \vdots \] \[ 100\frac{2}{15} = \frac{15 \times 100 + 2}{15} = \frac{1502}{15} \] ### Step 2: Factor Out the Common Denominator Notice that all terms have a common denominator of 15. We can factor this out: \[ \frac{1}{15} \left( 17 + 32 + 47 + \ldots + 1502 \right) \] ### Step 3: Identify the Pattern The numerators form an arithmetic series where the first term \(a = 17\) and the last term \(l = 1502\). The common difference \(d = 15\). ### Step 4: Find the Number of Terms To find the number of terms \(n\) in this arithmetic series, we can use the formula for the \(n\)-th term of an arithmetic series: \[ l = a + (n-1)d \] Substituting the known values: \[ 1502 = 17 + (n-1) \times 15 \] \[ 1502 - 17 = (n-1) \times 15 \] \[ 1485 = (n-1) \times 15 \] \[ n-1 = \frac{1485}{15} = 99 \] \[ n = 100 \] ### Step 5: Calculate the Sum of the Series The sum \(S_n\) of the first \(n\) terms of an arithmetic series can be calculated using the formula: \[ S_n = \frac{n}{2} \times (a + l) \] Substituting the values we found: \[ S_{100} = \frac{100}{2} \times (17 + 1502) = 50 \times 1519 = 75950 \] ### Step 6: Final Calculation Now we substitute back into our expression: \[ \frac{1}{15} \times 75950 = \frac{75950}{15} \] ### Step 7: Simplify the Fraction Now we simplify \(\frac{75950}{15}\): \[ 75950 \div 15 = 5063.33 \text{ or } 5063 \frac{1}{3} \] ### Final Answer Thus, the simplified form of the expression is: \[ 5063 \frac{1}{3} \] ---

To simplify the expression \(1\frac{2}{15} + 2\frac{2}{15} + 3\frac{2}{15} + \ldots + 100\frac{2}{15}\), we can follow these steps: ### Step 1: Rewrite the Mixed Numbers First, we rewrite each mixed number as an improper fraction. \[ 1\frac{2}{15} = \frac{15 \times 1 + 2}{15} = \frac{17}{15} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FRACTIONS AND DECIMALS

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application|5 Videos
  • FRACTIONS AND DECIMALS

    PEARSON IIT JEE FOUNDATION|Exercise Assessment Test|15 Videos
  • FRACTIONS AND DECIMALS

    PEARSON IIT JEE FOUNDATION|Exercise very Short Ans Type|41 Videos
  • FACTORS AND MULTIPLES

    PEARSON IIT JEE FOUNDATION|Exercise Crossword|1 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise CROSSWORD|1 Videos

Similar Questions

Explore conceptually related problems

Simplify: (1)/(-12)+(2)/(-15)

Simplify: 3+1 1/5+2/3-7/(15)

Knowledge Check

  • (17)/(15) xx (17)/(15) + (2)/(15) xx (2)/(15) - (17)/(15) xx (4)/(15) is equal to

    A
    0
    B
    1
    C
    10
    D
    11
  • Similar Questions

    Explore conceptually related problems

    Simplify : (-5x(2)/(15))(6x(2)/(9))

    Solve : 0/(15)+2/(15)+1/(15)

    Simplify: 1/(-12)+2/(-15) (ii) (-8)/(19)+(-4)/(57)

    Simplify. (((15)/(12))^(3))^(4)

    5(1)/(5)+2(2)/(15)+3(2)/(3)=?

    Simplify the (45 a ^(3) b ^(2))/( 15 a ^(2) b ^(4))

    Which of the following statements is true? 3/4<2/3<(12)/(15) (b) 2/3<3/4<(12)/(15) (c) 2/3<(12)/(15)<3/4 (d) (12)/(15)<2/3<3/4