Home
Class 6
MATHS
In the figure, ABD, BCD are two triangle...

In the figure, ABD, BCD are two triangles. BD is the bisector of `angleABC and angleADC. bar(AB)" || "bar(CD) and bar(AD)" || " bar(BC)`. If `angleBCD=50^(@)`, then find the angle of `angleBAD`.

Text Solution

Verified by Experts

`angleBCD=50^(@)and bar(BC)" || "bar(AD)`.
`angleCDA+angleBCD=180^(@)" (co-interior and angles)"`
`rArr angleCDA+50^(@)=180^(@)`
`angleCDA=180^(@)-50^(@)`
`angleCDA=130^(@)`
Similarly, `angleABC=130^(@)" "(because bar(AB)" || "bar(CD))`
Since BD is the bisector of `angleADC and angleABC`,
`angleABC=angleABD+angleCBD" "(because angleABD=angleCBD)`
`2angleABD=130^(@)rArr angleABD=angleCBD=(130)/(2)=65^(@)`
`angleADB+angleBDC=130^(@)and angleADB=angleBDC=(130)/(2)=65^(@)`
`lnDeltaABD,angleABD+angleADB+angleBAD=180^(@)`
`130^(@)+angleBAD=180^(@)`
`angleBAD=180^(@)-130^(@)=50^(@)`
Promotional Banner

Topper's Solved these Questions

  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise VERY SHORT ANSWER TYPE QUESTIONS|48 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise SHORT ANSWER TYPE QUESTIONS|19 Videos
  • FRACTIONS AND DECIMALS

    PEARSON IIT JEE FOUNDATION|Exercise Crossword|1 Videos
  • MENUSRATION

    PEARSON IIT JEE FOUNDATION|Exercise Crossword|1 Videos

Similar Questions

Explore conceptually related problems

In the figure, bar(AB)" || "bar(CD) and bar(AD)" || "bar(BC) . If angleABC=110^(@), angleACD=30^(@) , then find angleADC .

In the given figure, bar(AE) ||bar(CD) , AB=BC, and AE=CD. If bar(AC) bot bar(CD) and angleAEB=35^(@) , then find angleDBE .

If D is the mid -point of side AB of DeltaABC , then bar(AB) + bar(BC) + bar(AC) =

In the figure if EC is the bisector of angleBCD and AB||CD||EF. Find angle ABC

If ABCD is a square, then bar(AB) + 2 bar(BC) + 3 bar(CD) + 4 bar(DA) =

In the following figure (not to scale), bar(AB) || bar(CD) . If angleBAE=25^(@) and angleDCE=30^(@) , then find angleAEC .

In the figure, bar(DC)" || "bar(AB) . If angleACB=40^(@) and angleCAD=30^(@) , AC is the bisector of angleDAB , then find the angle of angleADC .

What is the angle between ? (i) bar(AB) and bar(AC) (ii) bar(AB ) and bar(BC)

In the figure above ( not to scale), bar(PF) ||bar(BE) and bar(AB)||bar(CD) . If /_FDC=130^(@) and /_ACD=20^(@) , find /_ACB and /_ ABC