Home
Class 7
MATHS
If 2^n)=1024, then 2^((n)/(2)+2=...

If `2^n)=1024`, then `2^((n)/(2)+2=`_______

A

64

B

128

C

256

D

512

Text Solution

Verified by Experts

The correct Answer is:
B

`2^n=1024=2^10rArrn=10`
`2^((n)/(2)+2)= 2^((10)/(2)+2`
`=2^5+2=2^7=128`
Hence the correct option is (b).
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Assessment test Test -2|1 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Test-2|12 Videos
  • MENSURATION

    PEARSON IIT JEE FOUNDATION|Exercise ASSESSMENT TESTS (Test - 1) |23 Videos

Similar Questions

Explore conceptually related problems

If sqrt(2^(n)) =1024, then 3((n)/(4)-4) =______.

If sqrt(2^(n))=1024, then 3^(2((n)/(4)-4))=

If sqrt(2^(n))=1024, then 3^(2((n)/(4)-4))=3(b)9 (c) 27(d)81

If 2^n=1024 , t h e n\ 2^(n/2+2) = (a)64 (b) 128 (c)256 (d) 512

2 ^(16-log_(2)1024) = ______

If sqrt(4^n) = 1024, then n is equal to

(1) If 5^(n+2)=625, find [(n+3)]^((1)/(3)):(2) If ((32)/(243))^(n)=(8)/(27), find ((n+0.4)/(1024))^(-n)

(sqrt(1024)-sqrt(24))^(2//3)(sqrt(1024)+sqrt(24))^(2//3)= ___________

If n in Z , then (2^(n))/(1+i)^(2n)+(1+i)^(2n)/(2^(n)) is equal to