Home
Class 8
MATHS
if x:y=3:2 then find (2x+y)/(4x-3y)...

if `x:y=3:2` then find `(2x+y)/(4x-3y)`

Text Solution

AI Generated Solution

To solve the problem where \( x:y = 3:2 \) and we need to find the value of \( \frac{2x+y}{4x-3y} \), we can follow these steps: ### Step 1: Express x and y in terms of a common variable Given the ratio \( x:y = 3:2 \), we can express \( x \) and \( y \) in terms of a variable \( k \): \[ x = 3k \quad \text{and} \quad y = 2k \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x : y = 3 : 2 find (2x + 3y) : (3x +5y)

If x+y=3 and xy=2, then find x^(4)+y^(4)

If x=2 and y=3, then find the values of (i) (2x+3y)/(4x-3y) " "(ii) (2x^(2)-7x+2y)/(2y^(2)-7y+2x)

If (3x-y):x(4x+y)=5:12 then find (x^(2)+y^(2)):(x+y^(2))

If ((2x-y)/(x+2y))=(1)/(2), then find the value of ((3x-y)/(3x+y))

Find the continued product: (2x+3y)(2x-3y)(4x^(2)+9y^(2))

If 2x = 3y = 4z, find x:y: z.

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

If 2x+3y=8 and xy=2; then find the value of 4x^(2)+9y^(2)