Home
Class 8
MATHS
If bc:ac:ab=1:3:5, then find (a)/(bc):(b...

If bc:ac:ab=1:3:5, then find `(a)/(bc):(b)/(ca)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find \(\frac{a}{bc} : \frac{b}{ca}\) given the ratio \(bc : ac : ab = 1 : 3 : 5\), we can follow these steps: ### Step 1: Assign Variables Based on the Given Ratios From the ratio \(bc : ac : ab = 1 : 3 : 5\), we can assign: - \(bc = 1k\) - \(ac = 3k\) - \(ab = 5k\) where \(k\) is a common multiplier. ### Step 2: Express \(a\), \(b\), and \(c\) in Terms of \(k\) We can express \(a\), \(b\), and \(c\) using the relationships from the ratios: - From \(bc = 1k\), we can write \(c = \frac{1k}{b}\). - From \(ac = 3k\), we can write \(a = \frac{3k}{c}\). - From \(ab = 5k\), we can write \(b = \frac{5k}{a}\). ### Step 3: Substitute to Find Relationships Now, substituting \(c\) from the first equation into the second: \[ a = \frac{3k}{\frac{1k}{b}} = \frac{3kb}{1} = 3kb \] Now substituting \(a\) into the third equation: \[ b = \frac{5k}{3kb} \implies b^2 = \frac{5k}{3k} \implies b^2 = \frac{5}{3} \implies b = \sqrt{\frac{5}{3}} \] ### Step 4: Find \(a\) and \(c\) Now we can find \(a\) and \(c\): - From \(b = \sqrt{\frac{5}{3}}\): \[ c = \frac{1k}{b} = \frac{1k}{\sqrt{\frac{5}{3}}} = \sqrt{\frac{3}{5}}k \] - Substitute \(b\) into \(a = 3kb\): \[ a = 3k\sqrt{\frac{5}{3}} = 3\sqrt{\frac{5}{3}}k \] ### Step 5: Calculate \(\frac{a}{bc}\) and \(\frac{b}{ca}\) Now we calculate: \[ bc = 1k = k \] \[ ca = c \cdot a = \left(\sqrt{\frac{3}{5}}k\right) \cdot \left(3\sqrt{\frac{5}{3}}k\right) = 3k^2 \] Now we can find: \[ \frac{a}{bc} = \frac{3\sqrt{\frac{5}{3}}k}{k} = 3\sqrt{\frac{5}{3}} \] \[ \frac{b}{ca} = \frac{\sqrt{\frac{5}{3}}k}{3k^2} = \frac{\sqrt{\frac{5}{3}}}{3k} \] ### Step 6: Form the Final Ratio Now we need to find the ratio: \[ \frac{a}{bc} : \frac{b}{ca} = 3\sqrt{\frac{5}{3}} : \frac{\sqrt{\frac{5}{3}}}{3k} \] To simplify, we can multiply both sides by \(3k\): \[ 3\sqrt{\frac{5}{3}} \cdot 3k : \sqrt{\frac{5}{3}} = 9k : 1 \] ### Final Answer Thus, the final answer is: \[ \frac{a}{bc} : \frac{b}{ca} = 9k : 1 \]
Promotional Banner

Topper's Solved these Questions

  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise Essay Type Question|5 Videos
  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 1|35 Videos
  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION|60 Videos
  • PROFIT AND LOSS DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 2) |29 Videos
  • REAL NUMBERS AND LCM AND HCF

    PEARSON IIT JEE FOUNDATION|Exercise level -11|1 Videos

Similar Questions

Explore conceptually related problems

If a:b=2:3 and b:c=5:7 then find a:c and a:b:c

If a:b=4:5 and b:c=2:3, then a:c=

If (a^(2)-bc)/(a^(2) +bc) + (b^(2)-ac)/(b^(2) + ac) + (c^(2)-ab)/(c^(2)+ab)= 1 then find (a^(2))/(a^(2) + bc) + (b^(2))/(b^(2) + ac) + (c^(2))/(c^(2) +ab)= ?

(1)/(bc)+(1)/(ca)+(1)/(ab)=

If ab+bc+ca=0 , then the value of ((b^(2)-ca)(c^(2)-ab)+(a^(2)-bc)(c^(2)-ab)+(a^(2)-bc)(b^(2)-ca))/((a^(2)-bc)(b^(2)-ca)(c^(2)-ab)) is

If bc + ab + ca = abc, then the value of (b+c)/(bc(1-a))+(a+c)/(ac(1-b))+(a+b)/(ab(1-c)) is

If a,b,c are in A.P., then (bc)/(ca+ab),(ca)/(bc+ab),(ab)/(bc+ca)