Home
Class 8
MATHS
Write the result after applying componen...

Write the result after applying componendo and dividendo to `3a^(2)+2b^(2):3a^(2)-2b^(2): :3c^(2)+2d^(2):3c^(2)-2d^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem using the method of componendo and dividendo, we will follow these steps: ### Step 1: Set Up the Ratios We start with the given proportion: \[ \frac{3a^2 + 2b^2}{3a^2 - 2b^2} = \frac{3c^2 + 2d^2}{3c^2 - 2d^2} \] ### Step 2: Apply Componendo and Dividendo According to the method of componendo and dividendo, we add the numerator and denominator of each ratio and also subtract the denominator from the numerator. For the left side: - **Numerator**: \( (3a^2 + 2b^2) + (3a^2 - 2b^2) = 6a^2 \) - **Denominator**: \( (3a^2 - 2b^2) - (3a^2 + 2b^2) = -4b^2 \) So, the left side becomes: \[ \frac{6a^2}{-4b^2} \] For the right side: - **Numerator**: \( (3c^2 + 2d^2) + (3c^2 - 2d^2) = 6c^2 \) - **Denominator**: \( (3c^2 - 2d^2) - (3c^2 + 2d^2) = -4d^2 \) So, the right side becomes: \[ \frac{6c^2}{-4d^2} \] ### Step 3: Write the New Proportion Now we can write the new proportion: \[ \frac{6a^2}{-4b^2} = \frac{6c^2}{-4d^2} \] ### Step 4: Simplify the Proportion We can simplify this proportion by canceling out the common factors: \[ \frac{6}{-4} \cdot \frac{a^2}{b^2} = \frac{6}{-4} \cdot \frac{c^2}{d^2} \] This leads to: \[ \frac{a^2}{b^2} = \frac{c^2}{d^2} \] ### Step 5: Cross Multiply Cross multiplying gives us: \[ a^2 d^2 = b^2 c^2 \] ### Step 6: Rearranging the Equation Rearranging the equation gives: \[ a^2 d^2 - b^2 c^2 = 0 \] ### Final Result Thus, the final result after applying componendo and dividendo is: \[ a^2 d^2 + b^2 c^2 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise Essay Type Question|5 Videos
  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 1|35 Videos
  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION|60 Videos
  • PROFIT AND LOSS DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 2) |29 Videos
  • REAL NUMBERS AND LCM AND HCF

    PEARSON IIT JEE FOUNDATION|Exercise level -11|1 Videos

Similar Questions

Explore conceptually related problems

Factorize : (a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3)

What will be factors of (a^(2)-b^(2))^(3) + (b^(2) -c^(2))^(3) + (c^(2) - a^(2))^(3)

If D is the mid-point of the side BC of triangle ABC and AD is perpendicular to AC, then 3b^(2)=a^(2)-c( b )3a^(2)=b^(2)3c^(2)b^(2)=a^(2)-c^(2)(d)a^(2)+b^(2)=5c^(2)

If a, b, c and d are in proportion, then show that (a^(3)+3ab^(2))/(3a^(2)b+b^(3))=(c^(3)+3cd^(2))/(3c^(2)d+d^(3))

When two ratios are equal, then the four quantities compositing them are said to be proportiona. If a/b=c/d, then it is written a:b=c:dor a:b::c:d. Also if a/b=c/d=lamdaimpliesa=blamdaand c=dlamdaimpliesa/b=c/d =(a+-c)/(b+-d)=(""^(n)sqrt((a)^(n)+-(c)^(n)))/(""^(n)sqrt((b)^(n)+-(d)^(n)))=lamda(lamdagt0) important property of proportion : 1. If a:b=c:d,then (a+b)/(b)=(c+d)/(d)("Componendo")i.e.(a)/(b)=(c)/(d)implies(a)/(b)+1=(c)/(d)+1 2. If a:b=c"d, then (a-b)/(b)=(c-d)/(d)("Dividenod")i.e.(a)/(b)=(c)/(d)implies(a)/(b)-1=(c)/(d)-1 3. If a:b:=c:d, then (a+b)/(a-b)=(c+d)/(c-d)("Componendo and dividendo") If a/b=c/d=e/fand(2a^(4)b^(2)+3a^(2)c^(2)-5e^(4)f)/(2b^(6)+3b^(2)d^(2)-5f^(5))=((a)/(b))^(n) then teh value of n is :

If a/b = c/d = e/f , then prove that each of these ratio's is equal to ((4a^(2)+3c^(2)-7e^(2))/(4b^(2)+3d^(2)-7f^(2)))^(1//2)

If a!=0 and the line 2bx+3cy+4d=0 passes through the points of intersection of the parabolas y^(2)=4ax and x^(2)=4ay, then: d^(2)+(2b+3c)^(2)=0 (b) d^(2)+(3b+2c)^(2)=0d^(2)+(2b-3c)^(2)=0 (d) d^(2)+(3b-2c)^(2)=0

If a!=0 and the line 2bx+3cy+4d=0 passes through the points of intersection of the parabolas y^(2)=4ax and x^(2)=4ay, then of (a)d^(2)+(2b+3c)^(2)=0(b)d^(2)+(3b+2c)^(2)=0(c)d^(2)+(2b-3c)^(2)=0 (d)none of these

If asin x=b cos x=(2c tan x)/(1-tan^(2)x) then ((a^(2)-b^(2))^(2))/(a^(2)+b^(2))= (A) c^(2) (B) 2c^(2) (C) 3c^(2) (D) 4c^(2)

(d^(2))/(dx^(2))(x^(2)+3x+2)= (A) 2x+3 (B) 2 (C) 3 (D) 2x