Home
Class 8
MATHS
If (x)/(2a-3b)=(y)/(3b-4c)=(z)/(4c-2a), ...

If `(x)/(2a-3b)=(y)/(3b-4c)=(z)/(4c-2a)`, then find the value of `x^(3)+y^(3)+z^(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{x}{2a - 3b} = \frac{y}{3b - 4c} = \frac{z}{4c - 2a} = k \] where \( k \) is a constant. From this, we can express \( x \), \( y \), and \( z \) in terms of \( k \): 1. \( x = k(2a - 3b) \) 2. \( y = k(3b - 4c) \) 3. \( z = k(4c - 2a) \) Next, we will find \( x + y + z \): \[ x + y + z = k(2a - 3b) + k(3b - 4c) + k(4c - 2a) \] Combining the terms inside the parentheses: \[ x + y + z = k \left( (2a - 2a) + (-3b + 3b) + (-4c + 4c) \right) \] This simplifies to: \[ x + y + z = k(0) = 0 \] Since \( x + y + z = 0 \), we can use the identity for the sum of cubes: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz) \] Given that \( x + y + z = 0 \), we have: \[ x^3 + y^3 + z^3 = 3xyz \] Now, we need to find \( xyz \): \[ xyz = k(2a - 3b) \cdot k(3b - 4c) \cdot k(4c - 2a) = k^3(2a - 3b)(3b - 4c)(4c - 2a) \] Thus, we can express \( x^3 + y^3 + z^3 \): \[ x^3 + y^3 + z^3 = 3k^3(2a - 3b)(3b - 4c)(4c - 2a) \] This is the final expression for \( x^3 + y^3 + z^3 \). ### Final Answer: \[ x^3 + y^3 + z^3 = 3k^3(2a - 3b)(3b - 4c)(4c - 2a) \]
Promotional Banner

Topper's Solved these Questions

  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 1|35 Videos
  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 2|19 Videos
  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise Short Answer Type Question|15 Videos
  • PROFIT AND LOSS DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 2) |29 Videos
  • REAL NUMBERS AND LCM AND HCF

    PEARSON IIT JEE FOUNDATION|Exercise level -11|1 Videos

Similar Questions

Explore conceptually related problems

If x=(a+b)/(a-b),y=(b+c)/(b-c),z=(c+a)/(c-a) then the value of ((2x+2)(4y+4)(z+1))/((x-1)(y-1)(z-1)) is equal to

If (x)/(a)=(y)/(b)=(z)/(c), then show that (x^(3)+a^(3))/(x^(2)+a^(2))+(y^(3)+b^(3))/(y^(2)+b^(2))+(z^(3)+c^(3))/(z^(2)+c^(2))=((x+y+z)^(3)+(a+b+c)^(2))/((x+b+z)^(2)+(a+b+c)^(2))

If x=(b-c)(a-d),y=(c-a)(b-d),z=(a-b)(c-d) , then the what is x^(3)+y^(3)+z^(3) equal to?

If a=x-y,b=y-z and c=z-x then the value of a^(3)+b^(3)+c^(3)

If x = 2a- 1, y = (2a - 2) and z =3 - 4a, then the value of x ^(3) + y ^(3) + z ^(3) will be :

If b+c = 2x, c+a =2y and a +b =2z then value of a^(3) +b^(3) +c^(3) is