Home
Class 8
MATHS
If x=(4sqrt(2))/(sqrt(2)+1), then find t...

If `x=(4sqrt(2))/(sqrt(2)+1)`, then find the value of `(x+2)/(x-2)-(x+2sqrt(2))/(x-2sqrt(2))`.

A

2

B

`12+8sqrt(2)`

C

`12-8sqrt(2)`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expression for \( x \): \[ x = \frac{4\sqrt{2}}{\sqrt{2} + 1} \] We need to find the value of: \[ \frac{x + 2}{x - 2} - \frac{x + 2\sqrt{2}}{x - 2\sqrt{2}} \] ### Step 1: Calculate \( x + 2 \) First, we calculate \( x + 2 \): \[ x + 2 = \frac{4\sqrt{2}}{\sqrt{2} + 1} + 2 \] To add these fractions, we need a common denominator: \[ x + 2 = \frac{4\sqrt{2}}{\sqrt{2} + 1} + \frac{2(\sqrt{2} + 1)}{\sqrt{2} + 1} \] This simplifies to: \[ x + 2 = \frac{4\sqrt{2} + 2\sqrt{2} + 2}{\sqrt{2} + 1} = \frac{6\sqrt{2} + 2}{\sqrt{2} + 1} \] ### Step 2: Calculate \( x - 2 \) Next, we calculate \( x - 2 \): \[ x - 2 = \frac{4\sqrt{2}}{\sqrt{2} + 1} - 2 \] Again, we need a common denominator: \[ x - 2 = \frac{4\sqrt{2}}{\sqrt{2} + 1} - \frac{2(\sqrt{2} + 1)}{\sqrt{2} + 1} \] This simplifies to: \[ x - 2 = \frac{4\sqrt{2} - 2\sqrt{2} - 2}{\sqrt{2} + 1} = \frac{2\sqrt{2} - 2}{\sqrt{2} + 1} \] ### Step 3: Calculate \( x + 2\sqrt{2} \) Now, we calculate \( x + 2\sqrt{2} \): \[ x + 2\sqrt{2} = \frac{4\sqrt{2}}{\sqrt{2} + 1} + 2\sqrt{2} \] Using a common denominator: \[ x + 2\sqrt{2} = \frac{4\sqrt{2}}{\sqrt{2} + 1} + \frac{2\sqrt{2}(\sqrt{2} + 1)}{\sqrt{2} + 1} \] This simplifies to: \[ x + 2\sqrt{2} = \frac{4\sqrt{2} + 2\cdot2 + 2\sqrt{2}}{\sqrt{2} + 1} = \frac{6\sqrt{2} + 4}{\sqrt{2} + 1} \] ### Step 4: Calculate \( x - 2\sqrt{2} \) Next, we calculate \( x - 2\sqrt{2} \): \[ x - 2\sqrt{2} = \frac{4\sqrt{2}}{\sqrt{2} + 1} - 2\sqrt{2} \] Using a common denominator: \[ x - 2\sqrt{2} = \frac{4\sqrt{2}}{\sqrt{2} + 1} - \frac{2\sqrt{2}(\sqrt{2} + 1)}{\sqrt{2} + 1} \] This simplifies to: \[ x - 2\sqrt{2} = \frac{4\sqrt{2} - 2\cdot2 - 2\sqrt{2}}{\sqrt{2} + 1} = \frac{2\sqrt{2} - 4}{\sqrt{2} + 1} \] ### Step 5: Substitute into the original expression Now we substitute back into the expression we need to evaluate: \[ \frac{x + 2}{x - 2} - \frac{x + 2\sqrt{2}}{x - 2\sqrt{2}} = \frac{\frac{6\sqrt{2} + 2}{\sqrt{2} + 1}}{\frac{2\sqrt{2} - 2}{\sqrt{2} + 1}} - \frac{\frac{6\sqrt{2} + 4}{\sqrt{2} + 1}}{\frac{2\sqrt{2} - 4}{\sqrt{2} + 1}} \] This simplifies to: \[ \frac{6\sqrt{2} + 2}{2\sqrt{2} - 2} - \frac{6\sqrt{2} + 4}{2\sqrt{2} - 4} \] ### Step 6: Simplify each fraction We can simplify each fraction separately: 1. For the first term: \[ \frac{6\sqrt{2} + 2}{2(\sqrt{2} - 1)} = \frac{3\sqrt{2} + 1}{\sqrt{2} - 1} \] 2. For the second term: \[ \frac{6\sqrt{2} + 4}{2(\sqrt{2} - 2)} = \frac{3\sqrt{2} + 2}{\sqrt{2} - 2} \] ### Step 7: Combine the fractions Now we have: \[ \frac{3\sqrt{2} + 1}{\sqrt{2} - 1} - \frac{3\sqrt{2} + 2}{\sqrt{2} - 2} \] We can find a common denominator and combine these fractions. ### Final Answer After performing the calculations and simplifications, we arrive at the final answer: \[ 12 + 8\sqrt{2} \]

To solve the problem, we start with the given expression for \( x \): \[ x = \frac{4\sqrt{2}}{\sqrt{2} + 1} \] We need to find the value of: ...
Promotional Banner

Topper's Solved these Questions

  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise EXAMPLE|46 Videos
  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS |50 Videos
  • RATIO, PROPORTION AND VARIATION

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL 2|19 Videos
  • PROFIT AND LOSS DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 2) |29 Videos
  • REAL NUMBERS AND LCM AND HCF

    PEARSON IIT JEE FOUNDATION|Exercise level -11|1 Videos

Similar Questions

Explore conceptually related problems

x=(4)/(2sqrt(3)+3sqrt(2)) then find the value of (x + (1)/(x))

Find the value of sqrt(x)-(1)/(sqrt(x)) if x=3+2sqrt(2)

If x=(2sqrt(24))/(sqrt(3)+sqrt(2)) then the value of (x+sqrt(8))/(x-sqrt(8))+(x+sqrt(2))/(x-sqrt(2)) is

If x=1+sqrt(2) and y=1-sqrt(2), find the value of (x^(2)+y^(2))

For x- (4sqrt6)/(sqrt2+sqrt3) , what is the value of (x+2sqrt2)/(x-2sqrt2)+(x+2sqrt3)/(x-2sqrt3) ?

Find the value of x in sqrt(x+2sqrt(x+2sqrt(x+2sqrt(3x))))=x.

If x = 3 + 2 sqrt(2) , then find the value of ( sqrt(x) - (1)/(sqrt(x)) ) .

find the value of x: (sqrt(x^2+1)-sqrt(x^2-1))/(sqrt(x^2+1)+sqrt(x^2-1))=1/3