Home
Class 10
MATHS
Prove the following identities: sec^4...

Prove the following identities: `sec^4A-sec^2A=tan^4A+tan^2A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: sec^(4)A-sec^(2)A=tan^(4)A+tan^(2)A

sec^(4)A-sec^(2)A=tan^(4)A+tan^(2)A

Prove the following identity: sec^4theta-sec^2theta=tan^4theta+tan^2theta

Prove the following identity: sec^4theta-sec^2theta=tan^4theta+tan^2theta

Prove the following identity: sec^(4)theta-sec^(2)theta=tan^(4)theta+tan^(2)theta

Prove the following identities : (sec A - tan A)/ (sec A + tan A) = 1 - 2 sec A tan A + 2 tan^(2) A

Prove the following identity: (sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1

Prove the following identities : sec^(4) A (1 - sin^(4) A) - 2 tan^(2) A = 1

Prove that following identities sec^(6)theta=tan^(4)theta+3tan^(2)thetasec^(2)theta+1

Prove the following identities : sec A (1 - sin A) (sec A + tan A) = 1