Home
Class 12
MATHS
If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^...

If `y=(x+sqrt(1+x^2))^n` then `(1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x+sqrt(1+x^(2)))^(n) then (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)

If y=(x+sqrt(1+x^2))^n , then show that (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=n^2y

If y=(x+sqrt(1+x^(2)))^(n) , then (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to -

If y=(x+sqrt(1+x^(2)))^(n) , then (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx) is

If y= sin (mlog (x+ sqrt( 1+x^(2)))),then (1+x^(2) ) (d^(2)y)/(dx^(2))+x(dy)/(dx) =

If y=(sin^(-1) x)/(sqrt(1-x^2)) , then show that (1-x^2)(d^2y)/(dx^2)-3x(dy)/(dx)-y=0 .

If y= (sin^(-1) x)^2 , then (1-x^2) (d^2 y)/(dx^2) - x (dy/dx) = ..........