Home
Class 11
MATHS
Show that lim(xrarr0)1/x does not exist....

Show that `lim_(xrarr0)1/x` does not exist.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x){{:((x)/(|x|)",",xne0),(0",",x=0):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={{:((|x|)/(x)",",xne0),(2",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={{:(1+x^(2)",",0lexle1),(2-x",",xgt1.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={:{((3x)/(|x|+2x)',xne0),(0",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

Let f(x)={{:((|x-3|)/((x-3))",",xne3),(0",",x=3.):} Show that lim_(xrarr3)f(x) does not exist.

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

If f(x)={(x-|x|)/x ,x!=0, 2,x=0 , show that lim_(xrarr0) f(x) does not exist.

If f(x) is defined as follows: f(x){{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

If f(x) is defined as follows: f(x)={{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.