Home
Class 12
MATHS
12. Using properties of determinants, pr...

12. Using properties of determinants, prove the following 1 a +bc a 1 b'+ ca b3 | =-(a-b)(b-c)(c-a)(a2 + b2 + c2). c+ abc C( a(a + C ab C

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants prove the following. abs[[1,a,bc],[1,b,ca],[1,c,ab]]=(a-b)(b-c)(c-a)

Using the Properties of determinants, prove the following: {:|(1,1,1),(a,b,c),(bc,ca,ab)|=(a-b)(b-c)(c-a)

Using properties of determinants, prove the following : |[a, a^2,bc],[b,b^2,ca],[c,c^2,ab]|=(a-b)(b-c)(c-a)(b c+c a+a b)

Using properties of determinants , prove that |{:(1,a,bc),(1,b,ca),(1,c,ab):}|=(a-b)(b-c)(c-a)

Using properties of determinants prove the following. abs[[b+c,a,a],[b,c+a,b],[c,c,a+b]]=4abc

Using properties of determinants,prove the following : det[[a,a^(2),bcb,b^(2),cac,c^(2),ab]]=(a-b)(b-c)(c-a)(bc+ca+ab)

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

Using properties of determinants,prove the b+c,a,ab,c+a,bc,c,a+b]|=4abc

Using properties of determinants, prove the following |(3a,-a+b,-a+c),(a-b,3b,c-a),(a-c,b-c,3c)|=3(a+b+c)(ab+bc+ca)

Using properties of determinants, prove the following |(a^2,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .