Home
Class 12
MATHS
a a+b a+2b 10. Using properties of deter...

a a+b a+2b 10. Using properties of determinants, show that `|[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]|=9b^2(a+b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinant show that : |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9b^2(a+b)

Using properties of determinats show that |{:(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a):}|=9b^2(a+b)

3. Using properties of determinants, show that :|[b+c,a,b] , [c+a,c,a] , [a+b,b,c]| = (a + b + c) (a-c)^2

Using properties of determinants, show that |1 a a^2 -b c 1 b b^2 -c a 1 c c^2 -a b|=0

Using properties of determinants, prove that |[a, a+b, a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]|=a^3

By using properties of determinants, show that : |[1,a,a^2],[1,b,b^2],[1,c,c^2]| = (a-b)(b-c)(c-a)

Using properties of determinants, show that abs[[a,a^2,b+c],[b,b^2,c+a],[c,c^2,a+b]]=(b-c)(c-a)(a-b)(a+b+c)

Using properties of determinant show that : |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

Using properties of determinant, prove that |(2a, a-b-c, 2a), (2b, 2b, b-c-a), (c-a-b,2c,2c)|=(a+b+c)^(3) .