Home
Class 10
MATHS
p(x)=x^(4)-3x^(2)+4x+5,g(x)=x^(2)+1-x...

p(x)=x^(4)-3x^(2)+4x+5,g(x)=x^(2)+1-x

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide p(x) by g(x) and find the quotient and remainder : p(x)=x^(4)-3x^(2)+4x+5, g(x)=x^(2)-x+1

Divide P(x) by g(x) and find the quotient and remainder. p(x)=x^(3)-3x^(2)+4x+5, g(x)=x^2+1-x

Divide p(x) by d(x) and find the quotient and remainder : p(x)=x^(4)-3x^(2)+4x+5, d(x)=x^(2)+2-3x

Divide p(x) by g(x) in each of the following questions and find the quotient q(x) and remainder r(x) : p(x)=x^(4)+4x^(2)+2, " "g(x)=x^(2)+1

Divide p(x) by g(x) in each of the following questions and find the quotient q(x) and remainder r(x) : p(x)=x^(4)+4x^(2)+2, " "g(x)=x^(2)+1

By remainder theorem , find the remainder when p(x) is divided by g(x) where , (i) p(x) =x^(3) -2x^2 -4x -1 ,g(x) =x+1 (ii) p(x) =4x^(3) -12x^(2) +14x -3,g(x) =2x-1 (iii) p(x) =x^(3) -3x^(2) +4x +50 ,g(x) =x-3

BY Remainder theorem , find the remainder when p(x) is divided by g(x) (i) p(x) =x^(3)-2x^(2)-4x-1, g(x)=x+1 (ii) p(x) =x^(3)-3x^(2)+4x+50, g(x) =x-3

BY Remainder theorem , find the remainder when p(x) is divided by g(x) (i) p(x) =x^(3)-2x^(2)-4x-1, g(x)=x+1 (ii) p(x) =x^(3)-3x^(2)+4x+50, g(x) =x-3

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1