Home
Class 12
MATHS
If y=log sec2x |cos4x|+|sinx|,where u=...

If `y=log_ sec2x |cos4x|+|sinx|`,where `u=sec2x` find `(dy)/(dx)` at `x=-pi/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log_u|cos4x|+|sinx| ,where u=sec2x find (dy)/(dx) at x=-pi/6

If y=log_u|cos4x|+|sinx| where u=sec2x then (dy/dx)_(x=-pi/6) is

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

y= 5^(x).sec^(-1)2x Find dy/dx

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If y =(2 - 3 cos x)/sinx , find dy/dx at x=pi/4

If y=log(sinx-cosx) , then (dy)/(dx) at x=(pi)/(2) is :