Home
Class 12
MATHS
" (iv) "fquad i=8+36x+3x^(2)-2x^(3)...

" (iv) "fquad i=8+36x+3x^(2)-2x^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the intervals in which f(x)=8+36x+3x^(2)-2x^(3) is increasing or decreasing.

Find the intervals in which f(x)=5+36x+3x^(2)-2x^(3) is increasing or decreasing.

Find the intervals in which f(x)=8+36 x+3x^2-2x^3 is increasing or decreasing.

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

Find the points of maxima and minima f(x)=(5)/(3x^(4)-4x^(3)-36x^(2)+28)

The real function f(x) =2x^(3)-3x^(2)-36x +7 is:

Find the intervals in which the function f(x) = 2x^(3)-15x^(2)+36x + 6 is (i) increasing, (ii) decreasing.

Find the intervals in which the function f(x) = 2x^(3)-15x^(2)+36x + 6 is (i) increasing, (ii) decreasing.