Home
Class 12
MATHS
lim(x->alpha)(tanxcotalpha)^(1/(x-alpha)...

`lim_(x->alpha)(tanxcotalpha)^(1/(x-alpha))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation ax^2+bx+c=0 , then lim_(xrarralpha)(ax^2+bx+c+1)^(1//x-alpha) is equal to

If alpha,beta are the roots of the equation ax^2+bx+c=0 , then lim_(xrarralpha)(ax^2+bx+c+1)^(1//x-alpha) is equal to

If alpha is a repeated root of ax^2+bx +c=0 , then lim_(xrarralpha)(sin(ax^2+bc+c))/(x-alpha)^2 is equal to

If alpha is a repeated root of ax^2+bx +c=0 , then lim_(xrarralpha)(sin(ax^2+bc+c))/(x-alpha)^2 is equal to

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

If alpha is not an integral multiple of pi , then : lim_(x to alpha) ((sin x)/(sin alpha))^(1/(x-alpha) )=

Let alpha and beta be the roots of ax^2+bx+c=0 Then lim_( x to alpha) (1- cos (ax^2+bx+c))/(x-alpha)^2 is equal to

Statement -1 : lim_(xrarralpha) sqrt(1-cos 2(x-alpha))/(x-alpha) does not exist. Statement-2 : lim_(xrarr0) (|sin x|)/(x) does not exist.