Home
Class 11
MATHS
The value of 5^((log)(1/5)(1/2))+(log)(s...

The value of `5^((log)_(1/5)(1/2))+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1/2)1/(10+2sqrt(21))` is.........

Promotional Banner

Similar Questions

Explore conceptually related problems

evaluate 5^(log_((1)/(3))((1)/(2)))+log_(sqrt(2))((4)/(sqrt(7)+sqrt(3)))+log_((1)/(2))((1)/(10+2sqrt(21)))

Compute the following 56+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1//2)1/(10+2sqrt(21))

Compute the following 56+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1//2)1/(10+2sqrt(21))

Simplify 5^(log1//5^((1//2)))+log_sqrt2(4/(sqrt7+sqrt3))+log_(1//2)(1/(10+2sqrt21)) .

Simplify 5^(log1//5^((1//2)))+log_sqrt2(4/(sqrt7+sqrt3))+log_(1//2)(1/(10+2sqrt21)) .

Simplify 5^(log1//5^((1//2)))+log_sqrt2(4/(sqrt7+sqrt3))+log_(1//2)(1/(10+2sqrt21)) .

Simplify 5^(log1//5^((1//2)))+log_sqrt2(4/(sqrt7+sqrt3))+log_(1//2)(1/(10+2sqrt21)) .

(1+log_(2)(x-4))/(log_(sqrt(2))(sqrt(x+3)-sqrt(x-3)))=1

Compute the following 56+(log)sqrt(2)(4)/(sqrt(7)+sqrt(3))+(log)_(1/2)(1)/(10+2sqrt(21))

log((sqrt2-1)/(sqrt2+1))