Home
Class 12
MATHS
Consider three points P = (-sin (beta-al...

Consider three points `P = (-sin (beta-alpha), -cos beta)`, `Q = (cos(beta-alpha), sin beta)`, and `R = ((cos (beta - alpha + theta), sin (beta - theta))`, where `0< alpha, beta, theta < pi/4` Then

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

2 sin ^(2) beta + 4 cos (alpha + beta) sin alpha sin beta + cos 2 (alpha + beta )=

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

Find the value of, cos alpha cos beta, cos alpha sin beta, -no alpha-sin beta, cos beta, 0 sin alpha cos beta, sin alpha sin beta, cos alpha] |

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =