Home
Class 12
MATHS
" If "I(n)=int(0)^( pi/4)tan^(n)xdx," th...

" If "I_(n)=int_(0)^( pi/4)tan^(n)xdx," then "

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4)2tan^(3)xdx

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

If I_(n)=int_(0)^( pi/4)tan^(n)xdx, show that (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),(1)/(I_(5)+I_(7)),... form an A.P. Find the common difference of this progression.

If I_(n)=int_(0)^(pi//4) tan^(n) x dx then {:(" " Lt),(n rarr oo):}n(I_(n)+I_(n+2))=

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of lim_(n to oo) n(I_(n)+I_(n-2)) is -

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of (I_(8)+I_(6)) is -

If I_(n) = int_(0)^(pi//4) tan^(n) x dx then (1)/(I_(3)+I_(5))=

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

Fundamental theorem of definite integral : If I_(n)=int_(0)^(pi/4)tan^(n)dx then lim_(ntooo)n(I_(n)+I_(n+2))=.......