Home
Class 12
MATHS
The function f(x)= xcos(1/x^2) for x != ...

The function `f(x)= xcos(1/x^2)` for `x != 0, f(0) =1` then at `x = 0, f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=(1-cos x)/(x^(2))" for "x ne 0, f(0)=1" at x=0 is"

f (x) = x cos ((1)/(x^(2))), x in 0 , f (0) = 1 at x = 0 f is

The function f(x)=x^(2)"sin"(1)/(x) , xne0,f(0)=0 at x=0

The function f(x)=(x-a)"sin"(1)/(x-a) for x!=a and f(a)=0 is :

The function f(x) =(e^(1//x^(2))/(e^(1//x^(2))-1)" for "x ne 0,f(0)=1" at x =0 is"

Consider the function f(x)=1/x^(2) for x gt 0 . To find lim_(x to 0) f(x) .

Consider the function f (x) = 1/x^2 for x > 0. To find lim_(x to 0) f(x) .

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is