Home
Class 11
MATHS
(sqrt(x))^(log(5)x-1)=5...

(sqrt(x))^(log_(5)x-1)=5

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the value of x:2(log_(x)sqrt(5))^(2)-3log_(x)sqrt(5)+1=0

The positive integral solution of the equation log_(x)sqrt(5)+log_(x)5x=(9)/(4)+log_(x)^(2)sqrt(5) is:

Number of value(s) of x satisfying log_(x^(2)+2)(5+sqrt(x))+log_(2+sqrt(x))(5+x^(2))=0 is/are

if x=2^(sqrt(5))*5^(sqrt(2)) then log_(10)x=(sqrt(A)-sqrt(B))log_(10)2+sqrt(B) then find A+B

Consider the inequalities log_(5)(x-3)+(1)/(2)log_(5)3<(1)/(2)log_(5)(2x^(2)-6x+7) and log_(3)x+log_(sqrt(3))x+log_((1)/(3))x<6

The domain of the function f(x)=sqrt((log_(5)2)^(2x+5)-(log_(4)25)^(x-7)) is

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.