Home
Class 12
MATHS
" e of "int(0)^(1)x^(2)e^(x)dx" is equal...

" e of "int_(0)^(1)x^(2)e^(x)dx" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(dx)/(e^(x)+e^(-x)) is equal to

int_(0)^(1)e^(2x)e^(e^(x) dx

e^(int_(0)^(1)(1)/(1+x)dx) is equal to

int_(0)^(1)2e^(x)dx

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int_(0)^(1)e^(2x)e^(e^(x) dx =)