Home
Class 10
MATHS
Given (x^3+12x)/(6x^2+8)=(y^3+27y)/(9y^2...

Given `(x^3+12x)/(6x^2+8)=(y^3+27y)/(9y^2+27).` Using componendo and dividendo, find `x:y.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given (x^(3)+12x)/(6x^(2)+8)=(y^(3)+27y)/(9y^(2)+27) . Using componendo and devidendo find x : y.

Simplify : (8x^3-27y^3)/(4x^2-9y^2)

(x^(3))/(9y^(2))times(27y)/(x^(5)) =____.

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

Factorize: 8(x+y)^3-27(x-y)^3

27x^(3)y^(3)-45x^(4)y^(2)