Home
Class 12
MATHS
R rarr R" is defined as "f(x)=2x+|x|" th...

R rarr R" is defined as "f(x)=2x+|x|" then "f(3x)-f(-x)-4x=

Promotional Banner

Similar Questions

Explore conceptually related problems

f:R->R is defined as f(x)=2x+|x| then f(3x)-f(-x)-4x=

f:R->R is defined as f(x)=2x+|x| then f(3x)-f(-x)-4x=

f:R->R is defined as f(x)=2x+|x| then f(3x)-f(-x)-4x=

f:R->R is defined as f(x)=2x+|x| then f(3x)-f(-x)-4x=

If f: R to R is defined by f(x) = 2x+|x| , then f(3x) -f(-x)-4x=

If f: R rarrR defined by f(x)=2x+|x| then f(3x)-f(-x)-4x=

If f:R rarr R be defined as f(x)=2x+|x| then f(2x)+f(-x)-f(x) is equal to

If f : R rarr R be defined as f(x) = 2x + |x| , then f(2x) + f(-x) - f(x) is equal to

If f : R rarr R be defined as f(x) = 2x + |x| , then f(2x) + f(-x) - f(x) is equal to

Let f : R rarr R be defined by f(x)=2 x+|x| then f(2 x)+f(-x)-f(x)=