Home
Class 12
MATHS
" If "lim(x rarr0)([(a-n)*nx-tan x]*sin ...

" If "lim_(x rarr0)([(a-n)*nx-tan x]*sin nx)/(x^(2))=0," where "n" is non-zero real number,then a is equal to- "

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x to 0) ({(a-n)nx - tan x} sin nx)/x^(2) = 0 , where n is non-zero real number, then a is equal to

If lim_(x rarr 0)(((a-n)nx-tanx)sinnx)/x^2=0 , where n is non zero real number, then a is equal to:

If (lim_(x rarr0)({(a-n)nx-tan x}sin nx)/(x^(2))=0 where n is nonzero real number,the a is 0 (b) (n+1)/(n)( c) n(d)n+(1)/(n)

If lim_(x rarr0)({(a-5)5x-tan x}sin5x)/(x^(2))=0 then a=...

lim_(x rarr 0) (sin nx[(a-n)nx - tan x])/(x^(2)) = 0 , where n is non-zero positive integer, tehn a is equal to :

lim_(x rarr0)[sin x]

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)((1)/(x))^(tan x)=

lim_(x rarr0)(tan x-sin x)/(x^(3)) is equal to