Home
Class 9
MATHS
(i)(2x+3y)^(2)-(2x-3y)^(2)=24xy...

(i)(2x+3y)^(2)-(2x-3y)^(2)=24xy

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2x+3y=14 and 2x-3y=2, find the value of xy.[ Hint use (2x+3y)^(2)-(2x-3y)^(2)=24xy

Using formula let's show that. (2x + 3y)^2 - (2x - 3y)^2 = 24xy

The factors of x^(3)-x^(2)y-xy^(2)+y^(3) are (a (x+y)(x^(2)-xy+y^(2))(b)(x+y)(x^(2)+xy+y^(2))(c)(x+y)^(2)(x-y)(d)(x-y)^(2)(x+y)

Equation of straight liens joining the origin and points of intersection of the line 3x+4y-5=0 and the curve 2x^(2)+3y^(2)=5 is (a)x^(2)-y^(2)=24xy(b)x^(2)+y^(2)=24xy(c)x^(2)+y^(2)=xy(d) None of these

Verify : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2)) (ii) x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))

Verify : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2)) " " (ii) x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))

A pair of perpendicular straight lines is drawn through the origin forming with the line 2x+3y=6 an isosceles triangle right-angled at the origin.The equation to the line pair is 5x^(2)-24xy-5y^(2)=05x^(2)-26xy-5y^(2)=05x^(2)+24xy-5y^(2)=05x^(2)+26xy-5y^(2)=0

Veriffy : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2))x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))

Divide 36x^(2)y^(5)+42xy^(3)-24x^(3)y^(2)-12y^(5) by -6y^(2) .

Simplify the following : 2x^(2)+3y^(2)-5xy+5x^(2)-y^(2)+6xy-3x^(2)