Home
Class 12
MATHS
" 6."quad x=log t+sin t,y=e^(t)+cos t...

" 6."quad x=log t+sin t,y=e^(t)+cos t

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx : x = log t+ sin t, y = e^t +cos t

x=sin t, y= cos 2t.

Equations of the tangent and normal to the curve x=e^(t) sin t, y=e^(t) cos t at the point t=0 on it are respectively

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is

x = sin t, y = cos 2 t .

If x = e^(t) sin t and y = e^(t) cos t, t is a parameter , then the value of (d^(2) x)/( dy^(2)) + (d^(2) y)/(dx^(2)) at t = 0 , is :

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

For the curve x = e^(t) cos t, y = e^(t) sin t the tangent line is parallel to x-axis when t is equal to