Home
Class 14
MATHS
y=ln^(3)tan^(2)(x^(4))...

y=ln^(3)tan^(2)(x^(4))

Promotional Banner

Similar Questions

Explore conceptually related problems

if y = tan^(2) (log x^(3))," find " (dy)/(dx).

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)

y=3^(log_(9)(1+tan^(2)x)) then (dy)/(dx)=

If y=tan^(-1)[(log(e//x^(3)))/(log(ex^(3)))]+tan^(-1)[(log(e^(4)x^(3)))/(log(e//x^(12)))]," then "(d^(2)y)/(dx^(2))=

If y=tan^(-1)((a)/(x))+log sqrt((x-a)/(x+a)), Prove that (dy)/(dx)=(2a^(3))/(x^(4)-a^(4))

If f(x)=tan^(-1)((ln(e//x^(3)))/(ln (ex^(3))))+tan^(-1)(ln(e^(4)x^(3))/(ln(e//x^(12))))(AA x ge e) incorrect statement is

If f(x)=tan^(-1)((ln(e//x^(3)))/(ln (ex^(3))))+tan^(-1)(ln(e^(4)x^(3))/(ln(e//x^(12))))(AA x ge e) incorrect statement is

The solution of the differential equation (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2)) is (A)tan^(-1)((x)/(y))^(2)=log y+c(B)tan^(-1)((y)/(x))=log x+c(C)tan^(-1)((x)/(y))=log x+c(D)tan^(-1)((y)/(x))=log y+c