Home
Class 6
MATHS
lim(x->0) {sinx-log(e^x cosx)}/(xsinx)...

`lim_(x->0) {sinx-log(e^x cosx)}/(xsinx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

lim_(x rarr 0) (e^x+e^-x-2 cosx)/(x sinx)

The value of lim_(xto0)(e^(x)-e^(x cosx))/(x+sinx) is

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

solve lim_(x->0) (x^2+1-cosx)/(xsinx)

value of lim_(x->0)(1-cos^3x)/(xsinx*cosx) is

lim_(x->0^+)((sinx)/(x-sinx))^(sinx) is (a)0 (b) 1 (c) ln e (d) e^1

lim_(x->0)(1+sinx-cosx+ln(1-x))/(x*tan^2x) using LHospitals Rule

lim_(x to 0) (e^(sinx)-e^x)/(sinx-x)..........