Home
Class 11
MATHS
Q. if (6x^2-5x-3)/(x^2-2x+6)<=4, then th...

Q. if `(6x^2-5x-3)/(x^2-2x+6)<=4`, then the least and the highest values of `4x^2` are`:`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (6x^(2)-5x-3)/(x^(2)-2x+6)<=4 then least and highest values of 4x^(2) are :

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

(x^(2)-5x-6)/(x^(2)+3x+2)

If (x^3-6x^2+10x-2)/(x^2-5x+6)=f(x)+A/(x-2)+B/(x-3) , then f(x)=

If (x^(2)+6x-16)/(x^(2)-5x+6)=(-6)/(x^(2)-2x-3) , then which of the following could be a value of x?

Simplify (x-3)/(x^(2)-x-6) + (2x-1)/(2x^(2) + 5x-3) - (2x +5)/(x^(2) + 5x +6)