Home
Class 12
MATHS
Without expanding evaluate the determi...

Without expanding evaluate the determinant `"Delta"=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)|` .

Promotional Banner

Similar Questions

Explore conceptually related problems

without expanding evaluate the determinant Delta=det[[1,1,1a,b,ca^(2),b^(2),c^(2)]]

Without expanding evaluate the following determinants. |(1,a,b+c),(1,b,c+a),(1,c,a+b)|

Without expanding determinant at any stage evaluate |(1,1,1),(a,b,c),(a^(2)-bc,b^(2)-ca,c^(2)-ab)|

Without expanding at any stage, find the value of the determinant : Delta=|(20,a,b+c),(20,b,a+c),(20,c,a+b)|

Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

Without expanding the determinant, prove that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a) .

Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Without expanding the determinant prove that |{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}|=|{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}|

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}