Home
Class 11
MATHS
let a=cosA+cosb-cos(A+B) and b=4sin(A/2)...

let `a=cosA+cosb-cos(A+B)` and `b=4sin(A/2)sin(B/2)cos((A+B)/2)` Then a-b is

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cosA -cosB -cosC =1-4sin(A/2)cos(B/2)cos(C/2) ,if A+B+C= pi

Prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))

If A+B+C+D=2pi , show that : cosA-cosB+cosC-cosD=4sin( (A+B)/(2)) sin( (A+D)/(2)) cos( (A+C)/(2)) .

If A+B+C+D=2pi , show that : cosA-cosB+cosC-cosD=4sin( (A+B)/(2)) sin( (A+D)/(2)) cos( (A+C)/(2)) .

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

Prove that (cosA-cosB)^2+(sin A-sin B)^2=4sin^2((A-B)/2)

to prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))

Multiply sin(A+B)=sinA cosB+ cos A sinB and sin(A-B)=sinA cosB - cosA sin B

Prove that : 2cosA cosB = cos (A + B) + cos (A-B) .