Home
Class 12
MATHS
If z is any complex number satisfying |z...

If z is any complex number satisfying `|z-3-2i|le 2 ` , then the maximum value of ` |2z - 6 + 5 i| ` is ___

Promotional Banner

Similar Questions

Explore conceptually related problems

If z is any complex number satisfying |z-3-2i|<=2 then the maximum value of |2z-6+5i| is

If z is any complex number satisfying |z-3-2i|lt=2 then the maximum value of |2z-6+5i| is

If z is any complex number satisfying |z-3-2i|lt=2 then the maximum value of |2z-6+5i| is

if z is any complex number satisfying abs(z-3-2i)le2 then the minimum value of abs(2z-6+5i) is

If z is any complex number satisfying |z - 3 - 2i | less than or equal 2, then the minimum value of |2z - 6 + 5i| is (1) 2 (2) 1 (3) 3 (4) 5

If z a complex number satisfying |z^(3)+z^(-3)|le2 , then the maximum possible value of |z+z^(-1)| is -

If z is any complex number satisfying abs(z-3-2i) le 2 , where i=sqrt(-1) , then the maximum value of abs(2z-6+5i) , is

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :

if |z-2i| le sqrt2 , then the maximum value of |3+i(z-1)| is :