Home
Class 12
MATHS
The value of sin(cos^(-1)x)-cos(sin^(-1)...

The value of `sin(cos^(-1)x)-cos(sin^(-1)x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y=pi , then the value of (sin^(-1)x+sin^(-1)y) is -

The value of sin^(-1)x+cos^(-1)x is

If sin^(-1) x + sin^(-1) y=pi/2 , then the value of cos^(-1) x +cos^(-1) y is :

The value of cos(sin^(-1)x+cos^(-1)x) is equal to

The value of tan {sin^(-1)(cos(sin^(-1)x))} tan{cos^(-1) (sin(cos^(-1)x))} x in (0,1) a)0 b)1 c)-1 d)None of these

If "cos"^(-1)x+"cos"^(-1)y=(2pi)/(7) , then the value of "sin"^(-1)x+"sin"^(-1)y is

The value of (cos(sin^(-1)x))^(2)-(sin(cos^(-1)x))^(2) is =

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))