Home
Class 11
MATHS
If any triangle A B C , that: (b^2-c^2)/...

If any triangle `A B C` , that: `(b^2-c^2)/(cosB+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

(b^2-c^2)/(cos B+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=……

Prove that (sin(B-C))/(cosB cosC)+(sin(C-A))/(cosC cosA)+(sin(A-B))/(cosA cosB) =0 .

In triangleABC, (b+c)cosA+(c+a)cosB+(a+b)cosC=

In triangle ABC, 2(bc cosA-ac cosB-ab cosC)=

In triangleABC, (cosA)/(c cosB+bcosC)+(cosB)/(acosC+ccosA)+(cosC)/(acosB+bcosA)=

In triangleABC, a(b^(2)+c^(2))cosA+b(c^(2)+a^(2))cosB+c(a^(2)+b^(2))cosC=

In triangle ABC , prove that a(cosC-cosB)=2(b-c)cos^2.(A)/(2) .

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

For any angles A,B,C. (sin(A-B))/(cosA.cosB)+(sin(B-C))/(cosB.cosC)+(sin(C-A))/(cosC.cosA)=...