Home
Class 12
MATHS
If int(1)/(a^(4)-x^(4))dx=A tan^(-1)((x)...

If `int(1)/(a^(4)-x^(4))dx=A tan^(-1)((x)/(a))+B log|(a+x)/(a-x)|+C` ,then `(A,B)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(1)/(x^(3)+x^(4))dx=(A)/(x^(2))+(B)/(x)+log|(x)/(x+1)|+C , then

If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C , then A-B=

If int(1)/(cos^(2)x(1-4tan^(2)x))dx=K log|(1+2tan x)/(1-2tan x)|+c, then K=

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

If int(dx)/(x^(4)+x^(2))=(A)/(x^(2))+(B)/(x)+ln|(x)/(x+1)|+C then

If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3)) + C , then :

int_(-1)^(1)log((4-x)/(4+x))dx=

If int(x^(3)+x)/(x^(4)-9)dx=A log| x^(4)-9|+B log||(x^(2)-3)/(x^(2)+3)|+c then (A)/(B)=