Home
Class 12
MATHS
If |z-25i|le15, then |maximum arg(z) - m...

If `|z-25i|le15`, then |maximum arg(z) - minimum arg(z)| equals
(A) `(pi)/(2)+cos^(-1)((3)/(5))`
(B) `sin^(-1)((3)/(5))-cos^(-1)((3)/(5))`
(C) `2cos^(-1)((4)/(5))`
(D) `2cos^(-1)((1)/(5))`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=(pi)/(2)

If |z-25i|<=15. then | maximum backslash arg(z)- minimum backslash arg(z)| equals

1/2cos^(-1)(3/5) equals

cos[2cos^(-1).(1)/(5)+sin^(-1).(1)/(5)] =

cos^(-1)(cos((5 pi)/(3)))+sin^(-1)(sin((5 pi)/(3)))=

Evaluate cos(sin^(-1)(4/5)+cos^(-1)(2/3))

cos^(-1)(cos(5 pi/(3))+sin^(-1)(cos(5 pi/(3))=

If |z-25i|le15 , then find (i) Maximum |z| (2) Maximum arg (z) (3) minimum |z| (4) Minimum arg (z)

The value of cos[(1)/(2)cos^(-1)cos((14 pi)/(5))]is(a)cos((2 pi)/(5))(b)cos(-(7 pi)/(5))(c)sin((pi)/(10))(d)-cos((3 pi)/(5))