Home
Class 12
MATHS
If [.] denotes G.I.F and x in((2)/(3),1)...

If `[.]` denotes G.I.F and `x in((2)/(3),1)` and `int([5-3x])/(x-2)dx=k log|x-2|+c` ,then `K=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(2)/(1-x^(4))dx = k log[(1+x)/(1-x)]+tan^(-1)x + c then k=

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c

If int(1)/(cos^(2)x(1-4tan^(2)x))dx=K log|(1+2tan x)/(1-2tan x)|+c, then K=

int _(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx = k log 2 , then k equals

If int(5x+2)/(x^(2)-3x+2)dx=log[(x-2)^(m).(x-1)^(n)]+c then (m,n)-=

If f(x)=log((1-x)/(1+x)) ,|x|<1" and f((2x)/(1+x^(2)))=K .f(x) then 50K=

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

If int(f(x))/(x^(3)-1)dx , where f(x) is a polynomial of degree 2 in x such that f(0)=f(1)=3f(2)=-3 and int(f(x))/(x^(3)-1)dx=-log|x-1|+log|x^(2)+x+1|+(m)/(sqrt(n))tan^(-1)((2x+1)/(sqrt(3)))+C . Then (2m+n) is

verify that int(2x-1)/(2x+3)dx = x - log|(2x+3)^(2)|+C