Home
Class 11
MATHS
Let {x} denote fractional part of x. The...

Let `{x}` denote fractional part of `x`. Then `lim_(x->0)({x}/(tan{x}))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If {x} denotes the fractional part of x, then lim_(x to 0) ({x})/(tan {x}) is equal to

If {x} denotes the fractional part of x, then lim_(x to 0) ({x})/(tan {x}) is equal to

Let {x} denote the fractional part of xlim Then lim_(X rarr 0) ({x})/(tan {x}) equals :

lim_(x to 0) (x)/(tan x) is equal to

lim_(x to 0) (x)/(tan x) is equal to

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. R=lim_(xto0+) f(x) is equal to