Home
Class 11
MATHS
" If in a "Delta ABC,(sin A)/(sin C)=(si...

" If in a "Delta ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C))," show that "a^(2),b^(2),c^(2)" are in A.P."

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin A)/(sin C)=(sin(A-B))/(sin(B-C)), prove that a^(2),b^(2),c^(2) are in A.P.

If in a hat harr ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)), prove that a^(2),b^(2),c^(2) are in A.P.

In a Delta ABC,(sin A)/(sin C)=(sin(A-B))/(sin(B-C)), then a^(2),b^(2),c^(2) are in

If (sin A)/(sin C) = (sin (A-B))/(sin (B-C)) , then show that, a^(2), b^(2), c^(2) are in A.P.

In a triangle ABC , if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) . Prove that a^2,b^2,c^2 are in A.P.

In Delta ABC , if (a)/( c ) = (sin (A-B))/( sin (B-C)) , " then " a^(2) , b^(2) , c^(2) are in

In Delta ABC, if a/c=(sin(A-B))/(sin (B-C)) , then a^2,b^2,c^2 are in

In Delta ABC, if sin A: sin C=sin (A-B): sin (B-C) , then a^2,b^2,c^2 are in

In Delta ABC , if sin^(2)A + sin^(2)B = sin^(2)C , then show that a^(2) + b^(2) = c^(2) .