Home
Class 10
MATHS
Prove the following identities: (cotA+c...

Prove the following identities: `(cotA+cos e cA-1)/(cotA-cos e cA+1)=(1+cosA)/(sinA)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: sin A cos A (tanA+cotA)=1

Prove the following identities: (1+secA+tanA)(1-cosecA+cotA)=2

Prove the following identities: 1/(cos e cA-cotA)-1/(sinA)=1/(sinA)-1/(cos e cA+cotA)

Prove the following identities: (cosA)/(1-sinA)+(sinA)/(1-cosA)+1 = (sinAcosA)/((1-sinA)(1-cosA) ((1+cotA+tanA)(sinA-cosA)/(sec^3A-cos e c^3A)=sin^2Acos^2A

Prove the following identities: (sinA+cosA)/(sinA-cosA)+(sinA-cosA)/(sinA+cosA)=2/(sin^2A-cos^2A)=2/(2sin^2A-1)=2/(1-2cos^2A)

Prove the following identities: (cosA)/(1-tanA)+(sinA)/(1-cotA)=sinA+cosA

Prove the following identities: (cosA)/(1-tanA)+(sinA)/(1-cotA)=cosA+sinA

Prove the following identities: (cosA)/(1-tanA)+(sinA)/(1-cotA)=cosA+sinA

Prove the following identities: (sinA+secA)^2+(cos"A"+"c o s e cA")^2=(1+secAcos e cA)^2 cot^2A((secA-1)/(1+sinA))+sec^2A((sinA-1)/(1+secA))=0

Prove the following identity: (sin^3A+cos^3A)/(sinA+cosA)+(sin^3A-cos^3A)/(sinA-cosA)=2