Home
Class 12
MATHS
By using properties of determinants, pro...

By using properties of determinants, prove the following `|(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x+4)(4-x)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants,prove the following ,2xdet[[x+4,2x,2x2x,x+4,2x2x,2x,x+4]]=(5x+4)(4-x)^(2)

|{:(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4):}|=(5x+4)(x-4)^2

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=y^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants, show that |{:(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4):}|=(5x+4)(4-x)^(2)

By using properties of determinats. Prove that- |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)| = (5x + 4) (x - 4)^2

By using properties of determinants, prove the following: |x+4 2x2x2xx+4 2x2x2xx+4|=(5x+4)(4-x)^2