Home
Class 12
MATHS
Let the function f(x) and g(x) be invers...

Let the function f(x) and g(x) be inverse of each other then `f(g(x)=g(f(x))=x f prime(g(x))g prime(x)=g prime(f(x))f prime(x)=1` If `dy/dx` exist and `(dy)/(dx)!=0,` then `(dx)/(dy)=1/((dy)/(dx)) or (dy)/(dx)*(dx)/(dy)=1 or (dy)/(dx)=1/((dx)/(dy))[(dx)/(dy)!=0]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the function f(x) and g(x) be inverse of each other then f(g(x)=g(f(x))=xf'(g(x))g'(x)=g'(f(x))f'(x)=1 If (dy)/(dx) exist and (dy)/(dx)!=0, then (dx)/(dy)=(1)/(dy) or (dy)/(dx)*(dx)/(dy)=1 or (dy)/(dx)=(1)/(dx)[(dx)/(dy)!=0]

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

If x=f(t) and y=g(t) , then find (dy)/(dx)

Express (dy)/(dx)=(y)/(x+ye^((-2x)/(y))) in the form (dx)/(dy)=F((x)/(y)).

[(dy)/(dx)]_(x=2) [ or f' (2) ]=

If y=f(cosx)" and "f'(x)=cos^(-1)x," then "(dy)/(dx)=

Express x (dy)/(dx)=y(logy-logx+1) in the form F((y)/(x))=(dy)/(dx)

If (f(x))^(g(y))=e^(f(x)-g(y)) then (dy)/(dx)=

If y=|f(x)g(x)h(x)l m n a b c| , prove that (dy)/(dx)=|f^(prime)(x)g^(prime)(x)h^(prime)(x)l m n a b c| .