Home
Class 12
MATHS
If G be the centroid of the DeltaABC and...

If G be the centroid of the `DeltaABC and O` be any other point in theplane of the triangle `ABC`, then prove that: `OA^2 +OB^2 +OC^2=GA^2 +GB^2 +GB^2 + GC^2 + 3GO^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 'O' is any point in the interior of rectangle ABCD,then prove that: OB^2+OD^2=OA^2+OC^2 .

If G be the centroid of a triangle ABC, prove that, AB^2 + BC^2 + CA^2 = 3(GA^2 + GB^2 + GC^2)

If 'O' is any point in the interior of rectangle ABCD, then prove that : OB^(2) + OD^(2) = OA^(2) + OC^(2)

If G be the centroid of the Delta ABC , then prove that AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)

If G be the centroid of a triangle ABC and P be any other point in the plane prove that PA^(2)+PB^(2)+PC^(2)=GA^(2)+GB^(2)+GC^(2)+3GP^(2)

lf G be the centroid of a triangle ABC and P be any other point in the plane prove that PA^2+PB^2+PC^2=GA^2+GB^2+GC^2+3GP^2

lf G be the centroid of a triangle ABC and P be any other point in the plane prove that PA^2+PB^2+PC^2=GA^2+GB^2+GC^2+3GP^2

If G be the centroid of a triangle ABC, prove that, AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)

Let G be the centroid of a triangle ABC and O be any other point, then bar(OA)+bar(OB)+bar(OC) is equal to

Let G be the centroid of a triangle ABC and O be any other point, then bar(OA)+bar(OB)+bar(OC) is equal to