Home
Class 11
MATHS
f(x) = |x-1| + |x-2|, g(x) = x + 1/x, x ...

`f(x) = |x-1| + |x-2|, g(x) = x + 1/x, x > 0`. if m1 = min(f(x)) and m2 = min(g(x)) then `(m2+m1)/(m2-m1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=|x-1|+|x-2|,g(x)=x+(1)/(x),x>0* if m 1=min(f(x)) and m2=min(g(x)) then (m2+m1)/(m2-m1) is equal to

f(x) = |x-1| + |x-2|, g(x) = x+(1)/(x), x gt 0 if m_(1) = min (f(x)) and m_(2) = min (g(x)) , then (m_(1)+m_(2))/(m_(2)-m_(1)) is equal to_________.

f(x) = |x-1| + |x-2|, g(x) = x+(1)/(x), x gt 0 if m_(1) = min (f(x)) and m_(2) = min (g(x)) , then (m_(1)+m_(2))/(m_(2)-m_(1)) is equal to_________.

If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1) = 2, " then" f'(1) is equal to

Let f(x) = (x^(2) + 4x + 1)/( x^(2) + x + 1), x inR If m le f(x) le M AA x in R , then (1)/(2) (M - m) = _______

If f(m) = m^2 - 3m + 1 , find f(-x)

If f'(x) = (x - a)^(2n) (x - b)^(2m +1) then x = a is a point of neither max. nor min.