Home
Class 11
MATHS
If x^2+1/x^2 = A and x-1/x=B (|x|>1)the...

If `x^2+1/x^2 = A` and `x-1/x=B (|x|>1)`then least value of `A/B` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = x^2+1/x^2 , B = x-1/x then minimum value of A/B is

If (1 -2x)/(3 + 2x - x^(2)) = (A)/(3 -x ) + (B)/(x + 1) ,then the value of A + B is

If A=x^(2)+(1)/(x^(2)),B=x-(1)/(x) then minimum value of (A)/(B) is (where x in(-1,0)uu(1,oo))

If A =((x-1)/(x+1)) and B =((x+1)/(x-1)) , then the value of (A+B)^(2) is:

If A=x^(2)+(1)/(x^(2)),B=x-(1)/(x) then minimum value of (A)/(B) is

If (1-2x)/(3+2x-x^2)=(A)/(3-x)+(B)/(x+1) then the value of A+B is

If (1-2x)/(3+2x-x^(2))=(A)/(3-x)+(B)/(x+1) then the value of A+B is

If x lies in the interval [0,\ 1] , then the least value of x^2+x+1 is (a) 3 (b) 3//4 (c) 1 (d) none of these