Home
Class 12
MATHS
if f(x)=3x^2+4 , 0<=x<=2 and f(x)=9x-2 ,...

if `f(x)=3x^2+4 , 0<=x<=2` and `f(x)=9x-2 , 2<=x<=4` then show that `int_0^4 f(x)dx=66`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^3+4x^2-x , find f(A) , where A=[(0 ,1, 2 ),(2,-3 ,0),( 1,-1 ,0)] .

If f(x)=3x^(2)-2x+4,f(-2)=

Let f(x)={{:(3x^(2)+4,"when"0 le x le 2),(9x-2,"when"2 le x le 4):} . Show that int_(0)^(4)f(x)dx=66 .

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

Let f_1:R→R,f_2:[0,∞)→R, f_3:R→R and f_4:R→[0,∞) be defined by f_1(x)={ ∣x∣ if x<0 ; e^x if x≥0 ; f_2(x)=x^2 ; f_3(x)={ sin x if x<0 ; x if x≥0 ; f_4(x)={ f_2(f_1(x)) if x<0 f_2(f_1(x)) if x≥0 ​then f_4 is

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

If f (x) = (x ^(2) - 3x +4)/(x ^(2)+ 3x +4), then complete solution of 0lt f (x) lt 1, is :

If f (x) = (x ^(2) - 3x +4)/(x ^(2)+ 3x +4), then complete solution of 0lt f (x) lt 1, is :

If f(x)=x^(3)+3x^(2)-2x+4, find f(-2)+f(2)-f(0)