Home
Class 12
MATHS
" 3) "cos^(-1)((x)/(sqrt(1+x^(2))))...

" 3) "cos^(-1)((x)/(sqrt(1+x^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = (pi)/6 , then ( 5 sin^(-1) x)/( sin^(-1) y) is

If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and " sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = pi/6 " , then " ( 5 sin^(-1) x)/( sin^(-1) y) is

If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and " sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = pi/6 " , then " ( 5 sin^(-1) x)/( sin^(-1) y) is

Integrate the functions (x cos^(-1)x)/(sqrt(1-x^(2)))

Integrate the following w.r.t. x. (cos^(-1)x)/(sqrt(1-x^(2)))

Solve cos ( sin^(-1)((x)/(sqrt(1+x^2))))= sin { cot^(-1) (3/4)}

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)